‘The Strad’ Posters Index

The Strad posters are an invaluable source of pictures, outlines and dimensions for those looking to make instruments inspired by great historically relevant instruments or simply those made by the great violin makers.  The Strad has published 62 posters to date.  I’ve complied a list of the posters, they’re now listed here, in my Reference section.  Collecting them all is a feat, given that these are normally published with The Strad periodical, and while you can order them from The Strad’s poster website, most are out of print.  A pity.

Update: As of Feb 2016, The Strad no longer publishes posters twice a year with its periodical.  They are still available on their website when in stock.

The Violin Makers Journal

The Violin Makers Association of British Colombia is a violin making club located in Vancouver, Canada.  The club has a long history dating back to its founding in March 1957.


I’ve recently become involved with the club and discovered the 60 issues its journal published from November 1957 to August 1964.  The Journal covers topics from editorials on violin making, violin making techniques and science, as well as the usual discussions on plate graduations and violin finishing.  The journal even includes direct correspondence from notables such as Carleen M. Hutchins.

I’ve begun digitizing and placing the editions on the club’s website, located here.  The remaining editions will become available as they are scanned.

This is a fascinating look into the recent history of violin making.  I’ll also be placing interesting articles from the journals here in the future.

Violin Museums Around the World

Violin Museums Around the World

I’ve been looking for a list of museums with ‘famous’ and historical stringed instruments from the violin family.  I never managed to find a good list, so I’ve started to compile one.  I’ll post it as a page in my ‘Resources’ section soon, but in the mean time I’ve created a google map with a listing of the primary ones.  Check it out here.  As well, feedback, corrections and additions are most welcome!

Resource Section Added!

Resource Section Added!

I’ve added a resource section which contains summaries and synopsis of a number of commonly referenced books on violin history, research and making.  Check it out!

Please let me know if you have any requests for information, or if you have suggestions of books to be added.

For each book I’ve included a WorldCat lookup.  Many of these books cost in the hundreds of dollars, but can be borrowed at local libraries or through inter-library loans.

Chladni and the his infamous patterns

Chladni patterns are visual representations of the nodes of vibrations setup in the a surface while it is subject to a specific frequency.  This and more on modern acoustics is found in Chapter 5 of Erik Jansson’s publication “Acoustics for Violin and Guitar Makers” here.  A good overall description of Chladni patterns can be found on the New South Whales University website here.

Ernst Florens Friedrich Chladni has been around a while and published a book on the patterns seen in vibrating plates in 1787.  His original publication is on Google Books here, however, a knowledge of old German and a Ph.D. in physics are prerequisite.  It’s reported that his interests in the patterns were inspired by George Christoph Lichtengberg’s earlier experiments on electrical figures[1].  Interest in this visual representation of sound waves was such that Chladni demonstrated it for Nepolean in 1809[2].  A plate of the image of Chladni is seen below [2].

Brain, Robert Michael, Robert S. Cohen Ole Knudsen, Hans Christian Orsted and
the romantic legacy in science: Ideas, disciplines, practices, Boston Studies
in the Philosphy of Science (Springer: 2007) p238

Stockmann, Hans-Jurgen, Quantum chaos: an introduction (Cambridge Univeristy
Press, 1999) p15

“The most ingenious piece of mechanical drawing…”

The 1885 book by Ed. Heron-Allen is well-known to the curious violin makers.  While certainly not a modern reference, it is interesting in its historical picture of the world of violin making.  It also teaches us there is nothing new under the sun; on page 133 he refers to the vibration modes 2 and 5, and nodal lines.  The book is now available from the open library project online, here.

In this book Heron-Allen provides a geometric way of producing a violin outline, taken from Jacob Augustus Otto book “ueber den Bau der Bogen-instrumente” from 1817 [Otto] also available in English [Bishop] here.   I decided to try reproducing the outline in a CAD program and came up with the following outline.  I can offer it to anyone interested.   Heron-Allen described it as: “though terribly complicated, the most ingenious piece of mechanical drawing I have ever come across”.   He does not give any method for choosing the dimensions, so I would classify this as more of a ‘curiosity’, then a sound reference.

Here is an excerpt from the book and the instructions for generating the diagram (Ed. Heron-Allen, Violin-Making: As it Was and Is Being a Historical; Theoretical and Practical Treatise on the Science and Art of Violin-Making for the use of Violin Makers and Players, Amateur and Professional, 2nd edition (Ward, Lock & Co. Ltd: London, New York, Melbourne, 1885) pp136-139):

To trace an independent outline mathematically on a given, graduated, perpendicular straight line, you must proceed as follows.  And I beg, before commencing the explanation of this operation, which is illustrated by Fig. 79, to record my indebtedness to Mr. John Bishop, by whose courtesy I am enabled to reproduce this diagram and descriptive letterpress from his translation of Otto’s work on the construction of the violin (vide note p. 20) [1] :—

Draw a perpendicular line down the middle of a sheet of paper or of the flat side of the piece of wood intended for the back, of the exact length required for the body of the instrument (without the button b, Fig. 79), and divide it into 72 equal parts, as shown in the figure.  This must be done with the greatest accuracy, for on it depends the correctness of the whole.

Then intersect this perpendicular, by 20 horizontal lines at the points named below.

Line (1) A at the point 8 Line (11) L at the point 33
Line (2) B at the point 14 Line (12) M at the point 34
Line (3) C at the point 16 Line (13) N at the point 37
Line (4) D at the point 20 Line (14) O at the point 39
Line (5) E at the point 20 ¼ Line (15) P at the point 40
Line (6) F at the point 22 Line (16) Q at the point 44 ¼
Line (7) G at the point 23 Line (17) R at the point 48
Line (8) H at the point 27 Line (18) S at the point 55
Line (9) I at the point 28 Line (19) T at the point 56
Line (10) K at the point 31 Line (20) V at the point 65

This being done, open the compasses to an extent of 9 parts of the perpendicular, and describe the two arcs a a from the point b.
Then place the compasses on the point 24, and opening them to b, draw the curve a b a.

Next set off 2 parts c, on each side of the perpendicular, on the horizontal line C. Place the compasses on the point c, and opening them to a, draw the curves d d, from a to the horizontal line A.

Now set off one part e, on each side of the perpendicular on the line B. Place the compasses on these points, and opening them to the line A, where the curve d ends, draw the curves f from the line A to that of D. This completes the draught of the upper portion of the instrument without the corners.

For the middle or narrow portion proceed thus :—On the horizontal line L set off 11 1/3  parts from the perpendicular to the point g; and then 11 other parts, from g to h, from which latter point draw the curve from the line L to that of P.

Next set off 23 ¾ parts on the line K, from the perpendicular to k ; open the compasses to the point where the curve i intersects the line M, and draw the curve from the line M to that of H. The little angle formed by the curves between the lines L and M, must be worked off so as to bring the sides into proper shape.

The lower portion is obtained as follows :—Open the compasses 11 parts, and describe the two arcs v v from the point r r.  Then place the compasses on the point 35, and opening them to r r, draw the curve v w v.

Next set off 6 parts x on each side of the perpendicular on the line S. Place the compasses on the point x, and opening them to v, draw the curves y y from v to the line V.

Now set off 4 parts z on each side of the perpendicular on the line T. Place the compasses on these points, and opening them to the line V, where the curve y ends, draw the curves a a from the line V to that of R.

For the upper corners, set off 24 ½ parts on the line G, from the perpendicular to o, and placing the compasses on this point, open them to the line D, where the curve f ends, and draw the curve from the line D to that of F.

Then on the line I set off 14 2/3 parts from the perpendicular to m. Place the compasses on this point, and opening them to line H where the curve ends, draw the curve from the line H to s.

Now on the line E set off 22 parts from the perpendicular to q. Place the compasses on this point, and opening them to where the curve meets the line F, draw the curve from the line F to s. Again place the compasses on the point 20, and opening them 16 1/3 parts mark off the length of the corners s s.

For the lower corners set off 24 parts on the line Q from the perpendicular to b b, and, placing the compasses on this point, open them to the line R, where the curve a a ends, and draw the curve from the line R to d d.

Then on the line N set off 16 ½ parts from the perpendicular to t. Place the compasses on this point, and, opening them to where the curve meets the line P, draw the curve from the last-named line to d d.

Lastly, place the compasses on the point 49, and, opening them 19 ¾ parts, mark off the length of the corners d d,d d.

This completes the entire model, and the belly can now be marked from the back thus traced.

To obtain the proper rise or height for the back or belly, take a thin piece of bard wood, about 2 inches broad, and a little longer than the violin you propose to make (Fig. 79a), and mark it in the middle at the point A, which must be three ” parts ” (of the foregoing scale) distant from the edge, shown here by the dotted line. Then, placing a large pair of compasses on the point A, open them 216 parts, or three times the length of the body of the instrument, and with this radius describe the arc shown in the figure, which, by being sawed out, will serve as a guide for the height or rise required.

The small semicircular piece seen at the top of Fig. 79 is the ” button,” which is part of the back, and made in one piece with it, to which is glued the shoulder when the neck is fixed to the body.

This method of tracing an outline (which has been given by more than one author) is, though terribly complicated, the most ingenious piece of mechanical drawing I have ever come across. Nowadays any one can get access to a good outline, which may be copied as before set down, but I have given the above method as it is extremely interesting, and clever in construction.

Jacob Augustus Otto, “ueber den Bau der Bogen-instrumente,” etc., 1st edition (Halle and Leipsic, 1817); 2nd edition (Jena, 1828),

John Bishop, of Cheltenham, “A treatise on the Structure, etc., of the Violin, etc.” (London, 1st edition 1848; 2nd edition 1860; 3rd edition 1875), Translation of Otto’s “ueber den Bau der Bogen-instrumente”